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Introduction
For the last thirty years sustained oscillations in the concentration of a chemical substance
have been the subject of intensive study. In spite of theoretical predictions of damped
oscillations and sustained oscillations by Lotka and Hirniakand [1, 2] in 1910 and Lotka
[3] in 1920, and the experimental observation of cyclic changes in the iodate catalyzed
decomposition of hydrogen peroxide by Bray in 1921 [4], both experimentalists and
theorists virtually ignored the field of chemical oscillations for nearly thirty years. Finally,
in the early 1950s Belusov [5, 6] observed cyclic color changes in the bromination of
citric acid catalyzed by cerium. By 1967 the first paper on the Belusov–Zhabotinsky (B–
Z) [7] reaction written in English reached the West. This reaction caused inmense interest
among so many researchers that the First Symposium on Biological and Biochemical
Oscillators was organized in 1968, forty seven years after Bray’s paper appeared in the
Journal of the American Chemical Society.

An interesting aspect of the B–Z system centers around the original motivation that
led Belusov to the celebrated reaction. Originally, his interest in biochemistry, and in
particular in the Krebs cycle [8], motivated Belusov to seek a simple experimental model
in which a carbohydrate was oxidized in the presence of a catalyst. In other words, the
B–Z reaction was intended as a model of an enzyme catalyzed reaction. This connection
between enzyme kinetics and the B–Z reaction is often forgotten and rarely mentioned.
Most likely, this omission can be traced to the differences between an enzyme and its model
counterpart Ce, the complicated mechanism underlining the chemical oscillations in the
B–Z reaction and the mathematical analyses needed to understand some of the reduced
models of the B–Z reaction. From the biochemical point of view these differences are
difficult to reconcile with a biological model; therefore, the search for a model of chemical
oscillation in enzyme kinetics that is both biochemically relevant and mathematically
simple enough to present to an undergraduate audience is worthwhile from the pedagogical
point of view.

In the present discussion we consider glycolysis emphasizing the allosteric properties of
phosphofructokinase (PFK). For nearly thirty years oscillations in the concentration of
nucleotides in the glycolitic pathway have been documented in the case of yeast cells
and cell-free extract [9]. For example, reduced nicotinadenine dinucleotide (NADH)
oscillations in yeast extract have been observed and determined to be flux dependent,
and a minimum external flux is required to sustain oscillations in the concentration of
NADH. Moreover, Hess and Boiteux [10] observed that phosphofructokinase plays an
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essential role in these oscillations. If PFK’s substrate, fructose-6-phosphate (F-6-P), is
added to cell-free extracts, the nucleotide concentrations oscillate. On the other hand, after
the injection of PFK’s product, fructose-1,6-bisphosphate (F-1,6-bP), no oscillations are
observed. Based on these observations and on the allosteric properties of PFK, two models
were suggested in the late 1960s. One, by Higgins [11], is based on the activation of PFK
by its product. The second model by Sel’kov [12] is based on the activation and inhibition
properties of PFK by ATP, ADP, and AMP. The latter links PFK with pyruvate kinase,
while the former does not.

In the next section we discuss the steps along the glycolytic pathway that are relevant to
the Higgins model. Next, we reduce the model to two variables and discuss its similarities
with Lotka’s models and the origin of the autocatalytic step. Finally, we scale the model,
do a linear stability analysis, and discuss the bifurcation diagram of the reduced, two-
variable Higgins model.

Higgins Model
The interest in the origin of periodic biological processes like the circadian clock has
motivated researchers to look for the chemical basis of oscillations in biochemical systems
[13–15]. One of these systems is glycolysis, in which six-membered sugars are converted
anaerobically into tricarbonic acids and ADP gets phosphorylated. In the case of glycolysis
the addition of glucose to an extract containing the main metabolites triggers cyclic, or
periodic, behavior in the concentrations of metabolites. These periodic changes in the
concentrations of the glycolytic metabolites are termed glycolytic relaxation oscillations.
In particular, relaxation oscillations in the concentration of NADH are readily observed
using spectrophotometric methods on yeast extracts. For the past thirty years researchers
have mostly studied relaxation oscillations that are due to a single injection of glucose. In
this case the system relaxes to equilibrium. Conversely, if constant or periodic injection
is applied, a system is pushed away from equilibrium and can achieve nonequilibrium
steady states.

Researchers have found that phosphofructokinase, which catalyzes the conversion of F-6-
P to F-1,6-bP, is the regulatory enzyme for glycolytic oscillations [16–17]. This regulation
is the result of the activation and inhibition properties of PFK. For example, in liver PFK
is activated by F-2,6-bP [18], which is an isomer of F-1,6-bP. In muscle PFK is inhibited
by ATP. Based on these facts, most kinetic models of glycolytic oscillations have centered



4 / V O L . 1 , N O . 3 I S S N 1 4 3 0 - 4 1 7 1
T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r
c© 1 9 9 6 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 ( 9 6 ) 0 3 0 3 5 - X

around either PFK’s inhibition [12] or its activation [11]. One of the models, based on the
activation of PFK by fructose biphosphate, is the Higgins model. This model considers
only two enzymatic reactions with a constant external source of glucose. Condensing two
steps of the glycolytic path into one, the Higgins model assumes a first order conversion
of glucose to F-6-P.

Glucose(G)
k◦−→ F-6-P (1)

Following this first step, the Higgins model considers the enzymatic conversion of F-6-P
to F-1,6-bP by PFK

F-6-P+ PFK
K1
⇀↽ F-6-P− PFK (2)

F-6-P− PFK
k1−→ F-1,6-bP+ PFK, (3)

and F-1,6-bP to glyceraldehyde-3-phosphate by aldolase (ALD).

F-1,6-bP+ ALD
K2
⇀↽ F-1,6-bP− ALD (4)

F-1,6-bP− ALD
k2−→ 2 Glyceraldehyde-3-phosphate(G-3-P)+ ALD (5)

In this model the regulation consists only of the activation of PFK by F-1,6-bP.

inactive Phosphofructokinase(PFK)+ F-1,6-bP
Ka
⇀↽ PFK (6)

Under this assumption the Higgins model sustains oscillations in the concentration of
F-6-P, F-1,6-P, and the enzymes. Using further simplifications, such as the steady-state
approximation for PFK, the model reduces to three time-dependent species with autocat-
alytic conversion of F-6-P to F-1,6-bP. Finally, if one considers a steady-state approxi-
maztion for ALD, one obtains a two-species model that is able to sustain oscillations.

For the sake of a simple notation, the following mechanism, which is equivalent to
equations1–6, will be used.

G◦
k◦−→ X (7)
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X + E1

k+E1−→ XE1 (8)

XE1

k−E1−→ X + E1 (9)

XE1
k1−→ Y + E1 (10)

Y + E2

k+E2−→ YE2 (11)

YE2

k−E2−→ Y + E2 (12)

YE2
k2−→ Z + E2 (13)

Y + E1
k+a−→ E1 (14)

E1
k−a−→ Y + E1 (15)

where G stands for glucose, X for F-6-P, E1 for PFK, Y for F-1,6-bP and E2 for ALD.
Using these equations, the mass action laws for the six species model are as follows:

d[X]

dt
= koG◦ − k+E1

[E1][X] + k−E1
[E1X] (16)

d[Y]

dt
= k1[E1X] − k+E2

[E2][Y] + k−E2
[E2Y] − k+a [Ē1][Y] + k−a [E1] (17)

d[E1]

dt
= k−E1

[E1X] − k+E1
[E1][X] + k1[E1X] − k−a [E1] + k+a [Ē1][Y] (18)

d[E1X]

dt
= −k−E1

[E1X] + k+E1
[E1][X] − k1[E1X] (19)

d[E1]

dt
= k−a [E1] − k+a [E1][Y] (20)

d[E2]

dt
= k−E2

[E2Y] − k+E2
[E2][Y] + k2[E2Y] = −d[E2Y]

dt
(21)

Using the steady-state approximation for all of the enzymes, we obtain a minimal two
variable model

d[X]

dt
= koG◦ − kac[X][Y] (22)
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d[Y]

dt
= kac[X][Y] − V2m

[Y]
K2M

1+ [Y]
K2M

, (23)

wherekac is given by the following equation:

kac =
Ka

V1m
K1M

1+ Ka[Y] + Ka
K1M

[X][Y]
(24)

and

Ki M = ki + k−Ei

k+Ei

(25)

Vim = ki E◦i (26)

Ka = k+a
k−a

(27)

In equation26 E◦i represents the stochiometric concentration of thei th enzyme. Also, in
the Higgins model,kac is simplified even further [19] to

kac = V1mKa

K1M
= k1k

+
E1

E◦i Ka

k1+ k−E1

(28)

Equations22–28constitute the Minimal Higgins (MH) model.

The Minimal Higgins Model as expressed by equations22 and23 shows some similar-
ities with the Lotka models. The two Lotka models are the simplest schemata in which
oscillations in the populations can be observed. A meaningful interpretation of the Lotka
model is in population dynamics. For example, if we define G as grass, R as rabbit, and
W as wolf, the explanation of the oscillatory behavior seems quite logical. As the rabbits
consume the grass and reproduce, their numbers grow. As the rabbit population grows,
the wolves have plenty of rabbits available for consumption, and they, too, reproduce.
As the wolf population increases, however, the rabbit population decreases. As the rabbit
population decreases, the wolves start to die, because there are not enough rabbits. As a
consequence the rabbits start the cycle again. For example, in the original Lotka model of
1910 species reproduction is proportional to the amount of food, which is kept constant;
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namely

G◦
kR−→ R (29)

This elementary step, in conjunction with the following steps:

R+W
kW−→ 2 W (30)

W
kD−→ D (31)

define what is known as the Lotka Model and the differential equations describing the
time behavior of the population are given in Table 1. Notice that the first differential
equations in the MH model and in Lotka’s 1910 model are the same.

In the 1920 paper, Lotka introduces a species dependent external flux; namely

G◦ + R
kR2−→ 2 R (32)

which is an autocatalytic step and substitutes for equation29. As in the previous case,
the amount of grass, G◦, is kept constant; the differential equations associated with this
model are given in Table 1. Notice that the 1920 model, also known as the Lotka–Volterra
model [20], is a variation of the 1910 model in which the external flux is modified from a
zeroth-order process to an autocatalytic first-order process. Consequently, we can think
of the MH model as a variation of the 1910 Lotka model, where we have included an
enzymatic step instead of a first order process in equation31.

Unfortunately, the first Lotka model yields only damped oscillations, and the Lotka–
Volterra model yields neutrally stable cycles for any initial conditions [21–23], which is a
severe restriction if we want to model realistic chemical and biochemical system. In con-
trast, the Minimal Higgins model shows stable steady states and stable oscillations usually
called limit cycles. The richness of this model stems from the second differential equation,
which includes an enzymatic Michaelis-Menten step. Moreover, the autocatalytic step in
the MH model can be linked to the activation of PFK by its product.

For completeness, we have included a fourth model in Table 1. This model is due to
Schnakemberg [24] and is related to the Sel’kov model. In this model the bimolecu-
lar autocatalytic step in the Lotka 1910 model is replaced by a trimolecular step. This
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TABLE 1 . Two variable models and their associated

differential equations.

Model Differential equations

Lotka 1910 d[R]
dt = kRG◦ − kW[R][W]

d[W]
dt = kw[R][W] − kD[W]

Lotka 1920 d[R]
dt = kRG◦[R] − kW[R][W]

Lotka–Volterra d[W]
dt = kw[R][W] − kD[W]

Minimal Higgins d[X]
dt = k◦G◦ − kac[X][Y]

d[Y]
dt = kac[X][Y] − V2m[Y]

K2M + [Y]

Schnakenberg d[X]
dt = k◦G◦ − kS[X][Y] 2

d[Y]
dt = ks[X][Y] 2− kD[Y]

change appears as a cubic term in the differential equations. With this change, the model
shows stable oscillations, but the connection between the cubic autocatalytic term and a
biochemical justification has not been achieved.

Linear Stability Analysis
In this section we present a linear stability analysis [21–23] of the Minimal Higgins
model. For this purpose, we scale the differential equation such that the dimensionless
differential equations depend only on two parameters rather than on five. Namely, we get
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from equations22and23

d X

dτ
= A− XY ≡ f1(X,Y) (33)

dY

dτ
= XY− qY

1+ Y
≡ f2(X,Y) (34)

where we have defined the following dimensionless quantities

τ = kacK2Mt (35)

X = [X]

K2M
(36)

Y = [Y]

K2M
(37)

A = k◦G◦
K 2

2Mkac
(38)

q = V2m

K 2
2Mkac

(39)

The first step in the stability analysis is to find the steady state solution. In general this is
done by setting the left hand side of the differential equations equal to zero and solving
for the concentrations. From equations33 and34, we obtain, for the scaled MH model,
the following steady state solutions

xss = q − A (40)

yss = A

q − A
(41)

Clearly from equations40and41, we see that only values ofA less thanq give meaningful
solutions; i.e.,xss and yss have to be positive. Physically this condition means that the
maximum enzymatic rate,V2m, has to be greater than the input flux,k◦ G◦.

Once these stationary states are obtained, stability analysis studies what happens to all
components of the system when it is perturbed slightly from its steady state. For this
purpose we first calculate the relaxation matrix,R, which is the Jacobian associated with
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a set of ordinary differential equations (ODEs) [21]

R=

(
∂ f1

∂X

)
(xss,yss)

(
∂ f1

∂Y

)
(xss,yss)(

∂ f2

∂X

)
(xss,yss)

(
∂ f2

∂Y

)
(xss,yss)

 (42)

For the scaled MH model, we obtain the following matrix.

R=
 −yss −xss

yss xss− q
(1+yss)2

 (43)

Next, we have to find the eigenvalues,λ±, of R. In other words we have to find the
solutions of the following equation.

|R− λI | = 0 (44)

whereI is the two by two identity matrix. For the MH model, equation (44) reduces to
the following characteristic polynomial.

λ2+
(1+ yss)(yss− xss)+ xss

1+ yss

 λ+
 xssyss

1+ yss

 = 0 (45)

Furthermore the solutions of the quadratic equation (45) are

λ± = −1

2

(1+ yss)(yss− xss)+ xss

1+ yss



± 1

2

√√√√√(1+ yss)(yss− xss)+ xss

1+ yss

2

− 4

 xssyss

1+ yss

 (46)

Using equations40and41, equation46can be reduced to the following expression

λ± = PR(A,q)±
√

PI (A,q)

2q(q − A)
(47)

where we have defined the following functions.

PR(A,q) = A
[
A2− 2Aq+ q2− q

]
(48)
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PI (A,q) = A
[
A5− 4q A4+ 2q(3q + 1)A3− 4q2(q + 2)A2

+ q2(q2+ 10q + 1)A− 4q2
]

(49)

Equations (48) and (49) have been obtained both by analytical methods and with the help
of the software package Mathematica [25].

Discussion
In this section we extract the information contained in equations47–49, which were
obtained in the previous section using linear stability analysis.

First, from equation47, we can consider four possible sets of conditions: (a) In the case
of PR < 0 andPI > 0, the eigenvalues are pure, real, and negative; thus, the steady state
solution is a stable fixed point [21]; (b) whenPR < 0 andPI < 0 the eigenvalues have a
negative real part and a nonzero imaginary part; therefore these eigenvalues give damped
oscillations; (c) forPR > 0 and PI > 0 the eigenvalues are pure, real, and positive;
therefore, the steady state is unstable; and (d) ifPR > 0 andPI < 0, the eigenvalues have
a positive real part and a nonzero imaginary part; thus, the steady state is unstable, and
the state of the system tends to move away from the steady state and approaches stable
oscillations.

Second, using equations48 and49, we can construct a plot ofA vs. q, where we can
easily observe different regions, each corresponding to different dynamical behaviors.
Figure 1 depicts such a diagram, and the different lines represent curves whereA− q,
PI , andPR are equal to zero; these curves delimit different regions in parameter space.
In region A, PI > 0 andPR < 0; thus, we should observe stable fixed points. In region
B, PI < 0 andPR < 0; therefore, we should observe damped oscillations. Finally, in
region C,PI < 0 andPR > 0 and we should observe limit cycles.

Also, fora fixed value ofq, the value ofA at whichPR(A,q) is equal to zero,Ac, defines
the bifurcation point. From equation48 the nontrivial solution toPR(Ac,q) = 0, for a
fixed value ofq, is given by

Ac = q − √q (50)

where we have used the physical conditionA < q. Consequently, values ofAgreater than
Ac are in regions A or B, and for values less thanAc are in region C. Thus forAc < A < q
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FIGURE 1. PARAMETER SPACE DIAGRAM FOR THE MINIMAL HIGGINS MODEL. REGION A IS LIMITED BY THE
LINE q = A AND PI (A,q) = 0; REGION B IS LIMITED BY PI (A,q) = 0 AND PR(A,q) = 0; REGION C IS DEFINED BY
PR(A,q) > 0.

the system reaches a stable steady state. ForA < Ac, the system reaches a limit cycle. As
an example, if we considerq = 10, the bifurcation will occur atAc = 6.837. With this
information we can select different values of the dimensionless external flux, A, in such
a way that different dynamical behaviors can be observed if we numerically integrate
equations33and34.

Finally, using Mathematica, we numerically integrate equations33 and34, with initial
conditionsx(0) = 10 andy(0) = 10, and generate Figures 2–4. First, we consider
q = 10 andA = 8.50. These values represent a point in region A. Figure 2a depicts the
approach ofx to its steady state value (xss = 1.5), and Figure 2b shows the approach
to the fixed point (1.5, 5.66) inxy phase space. Next, we considerA = 6.87. Figure 3a
illustrates the time series of a damped oscillation asx approaches its steady state value
of xss = 3.13. In Figure 3b, we observe inxy phase space the spiral in approach to the
steady state (xss = 3.13, yss = 2.19). Finally, we considerA = 6.5. This value is less
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FIGURE 2. EXAMPLE OF A FIXED POINT. IN THIS CASE WE CONSIDER q = 10AND A = 8.50, WHICH REPRESENTS A
POINT IN REGION A. FIGURE (a) SHOWS THE TIME SERIES OF x WITH INITIAL VALUES x = 10AND y = 10; FIGURE (b)
DEPICTS THE BEHAVIOR IN xy PHASE SPACE.

than Ac, which means that stable oscillations could be observed. Figure 4a depicts the
stable oscillations ofx as a function of scaled time; Figure 4b shows the approach to a
stable limit cycle around the unstable steady state (xss= 3.5, yss= 1.86).

The only problem associated with the MH model and inherent in all of the models in
Table 1 is a fixed point aty = 0 and an infinitely large value ofx. Numerically, for
fixed q, the problem appears for small values ofA. In some cases, Mathematica is not
able to handle the numerical integrations and other algorithms are required to study the
differential equations for small values ofA [26, 27]. Modifications intended to remove
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FIGURE 3. EXAMPLE OF DAMPED OSCILLATIONS. IN THIS CASE WE CONSIDER q = 10 AND A = 6.87, WHICH
REPRESENTS A POINT IN REGION B. FIGURE (a) DEPICTS THE DAMPED OSCILLATIONS OF x AS a FUNCTION OF
DIMENSIONLESS TIME WITH THE SAME INITIAL CONDITIONS AS IN FIGURE 2; FIGURE (b) DEPICTS THE SPIRAL IN
APPROACH TO THE STABLE STEADY STATE IN xy PHASE SPACE.

these kind of fixed points have been done to the Schnakenberg model. For example, the
addition of a first order conversion ofx into y is discussed in references [28–30].

Summary
The minimal Higgins model is a simple two-species model that shows stable steady states
and limit cycles in enzyme kinetics. The steps in the mechanism have a biochemical
justification and the step responsible for the stable oscillation is a Michaelis–Menten
step. Furthermore, linear stability analysis of this model is simple and accessible both
analytically or with the help of Mathematica; for example the bifurcation points are
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FIGURE 4. EXAMPLE OF A STABLE LIMIT CYCLE. IN THIS CASE WE CONSIDER Q = 10 AND A = 6.50, WHICH
REPRESENTS A POINT IN REGION C. FIGURE (a) DEPICTS THE STABLE OSCILLATIONS IN X AS A FUNCTION OF
DIMENSIONLESS TIME WITH THE SAME INITIAL CONDITION AS IN FIGURE 2; FIGURE (b) SHOWS THE APPROACH
TO THE LIMIT CYCLE IN XY PHASE SPACE.

obtained by fixing eitherA or q and solving a simple quadratic equation; that is, equation
50. Also, numerical integration of equations33and34both confirms and exemplifies the
results obtained from linear stability analysis.
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