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In the Classroom

The Higgins
model is a two
variable model in
enzyme kinetics
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steady states,
damped
oscillations and
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he Higgins model is a two variable model in enzyme

kinetics. In contrast with other popular simple dy-

namical models like the Lotka—\Volterra model, the

Higgins model shows steady states, damped oscilla-
tions and stable limit cycles. For these three dynamical behaviors,
stability analysis yields expressions of the eigenvalues, which are
easy to obtain either analytically or with the use of Mathematica.
With these expressions we can find the boundaries between the
three dynamical regions in parameter space and the bifurcation
point. Also, we have compared the Higgins model with the other
two variable models and find that the origin of the richer dynam-
ical behavior of the Higgins model is due to the enzymatic step
in the mechanism.
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Introduction

For the last thirty years sustained oscillations in the concentration of a chemical substance
have been the subject of intensive study. In spite of theoretical predictions of damped
oscillations and sustained oscillations by Lotka and Hirniakdng][in 1910 and Lotka

[3] in 1920, and the experimental observation of cyclic changes in the iodate catalyzed
decomposition of hydrogen peroxide by Bray in 192], poth experimentalists and
theorists virtually ignored the field of chemical oscillations for nearly thirty years. Finally,

in the early 1950s Belusow] 6] observed cyclic color changes in the bromination of
citric acid catalyzed by cerium. By 1967 the first paper on the Belusov—Zhabotinsky (B—
Z) [ 7] reaction written in English reached the West. This reaction caused inmense interest
among so many researchers that the First Symposium on Biological and Biochemical
Oscillators was organized in 1968, forty seven years after Bray’s paper appeared in the
Journal of the American Chemical Society

An interesting aspect of the B—Z system centers around the original motivation that
led Belusov to the celebrated reaction. Originally, his interest in biochemistry, and in
particular in the Krebs cycle3], motivated Belusov to seek a simple experimental model

in which a carbohydrate was oxidized in the presence of a catalyst. In other words, the
B—Z reaction was intended as a model of an enzyme catalyzed reaction. This connection
between enzyme kinetics and the B—Z reaction is often forgotten and rarely mentioned.
Most likely, this omission can be traced to the differences between an enzyme and its model
counterpart Ce, the complicated mechanism underlining the chemical oscillations in the
B—Z reaction and the mathematical analyses needed to understand some of the reduced
models of the B—Z reaction. From the biochemical point of view these differences are
difficult to reconcile with a biological model; therefore, the search for amodel of chemical
oscillation in enzyme kinetics that is both biochemically relevant and mathematically
simple enoughto presentto an undergraduate audience is worthwhile from the pedagogical
point of view.

In the present discussion we consider glycolysis emphasizing the allosteric properties of
phosphofructokinase (PFK). For nearly thirty years oscillations in the concentration of
nucleotides in the glycolitic pathway have been documented in the case of yeast cells
and cell-free extract9). For example, reduced nicotinadenine dinucleotide (NADH)
oscillations in yeast extract have been observed and determined to be flux dependent,
and a minimum external flux is required to sustain oscillations in the concentration of
NADH. Moreover, Hess and BoiteuX [] observed that phosphofructokinase plays an
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essential role in these oscillations. If PFK’s substrate, fructose-6-phosphate (F-6-P), is
addedto cell-free extracts, the nucleotide concentrations oscillate. On the other hand, after
the injection of PFK’s product, fructose-1,6-bisphosphate (F-1,6-bP), no oscillations are
observed. Based on these observations and on the allosteric properties of PFK, two models
were suggested in the late 1960s. One, by Higding |s based on the activation of PFK

by its product. The second model by Sel'’kd\?] is based on the activation and inhibition
properties of PFK by ATP, ADP, and AMP. The latter links PFK with pyruvate kinase,
while the former does not.

In the next section we discuss the steps along the glycolytic pathway that are relevant to
the Higgins model. Next, we reduce the model to two variables and discuss its similarities
with Lotka’s models and the origin of the autocatalytic step. Finally, we scale the model,
do a linear stability analysis, and discuss the bifurcation diagram of the reduced, two-
variable Higgins model.

Higgins Model

The interest in the origin of periodic biological processes like the circadian clock has
motivated researchers to look for the chemical basis of oscillations in biochemical systems
[13-15]. One of these systems is glycolysis, in which six-membered sugars are converted
anaerobically into tricarbonic acids and ADP gets phosphorylated. Inthe case of glycolysis
the addition of glucose to an extract containing the main metabolites triggers cyclic, or
periodic, behavior in the concentrations of metabolites. These periodic changes in the
concentrations of the glycolytic metabolites are termed glycolytic relaxation oscillations.
In particular, relaxation oscillations in the concentration of NADH are readily observed
using spectrophotometric methods on yeast extracts. For the past thirty years researchers
have mostly studied relaxation oscillations that are due to a single injection of glucose. In
this case the system relaxes to equilibrium. Conversely, if constant or periodic injection
is applied, a system is pushed away from equilibrium and can achieve nonequilibrium
steady states.

Researchers have found that phosphofructokinase, which catalyzes the conversion of F-6-
P to F-1,6-bP, is the regulatory enzyme for glycolytic oscillatidris-L 7]. This regulation

Is the result of the activation and inhibition properties of PFK. For example, in liver PFK

Is activated by F-2,6-bPLE], which is an isomer of F-1,6-bP. In muscle PFK is inhibited

by ATP. Based on these facts, most kinetic models of glycolytic oscillations have centered
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around either PFK’s inhibitionlZ] or its activation [L1]. One of the models, based on the
activation of PFK by fructose biphosphate, is the Higgins model. This model considers
only two enzymatic reactions with a constant external source of glucose. Condensing two
steps of the glycolytic path into one, the Higgins model assumes a first order conversion
of glucose to F-6-P.

Glucose(G) —> F-6-P (1)

Following this first step, the Higgins model considers the enzymatic conversion of F-6-P
to F-1,6-bP by PFK

K
F-6-P+ PFK < F-6-P— PFK 2

F-6-P— PFK —% F-1,6-bP+ PFK, (3)

and F-1,6-bP to glyceraldehyde-3-phosphate by aldolase (ALD).

K
F-1,6-bP+ ALD <X F-1,6-bP— ALD (4)

F-1,6-bP— ALD —% 2 Glyceraldehyde-3-phosphai®-3-P) - ALD  (5)

In this model the regulation consists only of the activation of PFK by F-1,6-bP.

_ Ka
inactive PhosphofructokinagFK) + F-1,6-bP<= PFK (6)

Under this assumption the Higgins model sustains oscillations in the concentration of
F-6-P, F-1,6-P, and the enzymes. Using further simplifications, such as the steady-state
approximation for PFK, the model reduces to three time-dependent species with autocat-
alytic conversion of F-6-P to F-1,6-bP. Finally, if one considers a steady-state approxi-
maztion for ALD, one obtains a two-species model that is able to sustain oscillations.

For the sake of a simple notation, the following mechanism, which is equivalent to
equationsl—6, will be used.

G. = X 7
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X +E; —> XE; (8)

XE; E) X+E (9)

XE; -4 Y +E (10)

Y+E LY YE; (11)

YE, Yy +E (12)

YE, 2% Z 4+ E (13)

Y4+E 2 E (14)

E, -5 Y +E (15)

where G stands for glucose, X for F-6-R, tér PFK, Y for F-1,6-bP and Efor ALD.
Using these equations, the mass action laws for the six species model are as follows:

d[X]

“gr = KoGo — Kg[EdlIX] + kg [EaX] (16)
%?Z“ﬁﬂ—ﬁﬁW%WaBﬂ4$mm+@Eﬂ (17)
dEjEtl] = kg [ExX] — K& [Edl[X] + Ki[ExX] — Ki[Ea] + KI[ED[Y]  (18)
d[ZX] = —kg,[E1X] + kg [E4][X] — Ki[E1X] (19)
IS _ e - keI (20)
dg?==kéEﬂq—k$Eﬂﬂq+kﬂaﬂ]=—d€?q 21)

Using the steady-state approximation for all of the enzymes, we obtain a minimal two
variable model

d[X
%}=&@—Mﬂml (22)
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d[y] Vom ik

gt = keeXIY] = 7 (23)
Kam

whereky. is given by the following equation:

Vim

aK—
_ 1w 24
o = TRV + S IXIIY] (e

and

ko
Kiv = K T E (25)

Ei
Vim = k E? (26)
K, = @ 27)

In equation26 E? represents the stochiometric concentration of thenzyme. Also, in
the Higgins modelk,. is simplified even furtherl9] to

kac _ V]_mKa _ klki:_l io Ka
Kim Ky + Kg,

(28)

Equations22-28 constitute the Minimal Higgins (MH) model.

The Minimal Higgins Model as expressed by equatiag@sind23 shows some similar-

ities with the Lotka models. The two Lotka models are the simplest schemata in which
oscillations in the populations can be observed. A meaningful interpretation of the Lotka
model is in population dynamics. For example, if we define G as grass, R as rabbit, and
W as wolf, the explanation of the oscillatory behavior seems quite logical. As the rabbits
consume the grass and reproduce, their numbers grow. As the rabbit population grows,
the wolves have plenty of rabbits available for consumption, and they, too, reproduce.
As the wolf population increases, however, the rabbit population decreases. As the rabbit
population decreases, the wolves start to die, because there are not enough rabbits. As a
conseguence the rabbits start the cycle again. For example, in the original Lotka model of
1910 species reproduction is proportional to the amount of food, which is kept constant;
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namely

kr

G,—R (29

This elementary step, in conjunction with the following steps:

R+W % 2w (30)
W - D (31)

define what is known as the Lotka Model and the differential equations describing the
time behavior of the population are given in Table 1. Notice that the first differential
equations in the MH model and in Lotka’s 1910 model are the same.

In the 1920 paper, Lotka introduces a species dependent external flux; namely

K,
G, +R—% 2R (32)

which is an autocatalytic step and substitutes for equditbrAs in the previous case,

the amount of grass, Gis kept constant; the differential equations associated with this
model are given in Table 1. Notice that the 1920 model, also known as the Lotka—\olterra
model 20], is a variation of the 1910 model in which the external flux is modified from a
zeroth-order process to an autocatalytic first-order process. Consequently, we can think
of the MH model as a variation of the 1910 Lotka model, where we have included an
enzymatic step instead of a first order process in equétion

Unfortunately, the first Lotka model yields only damped oscillations, and the Lotka—
\olterra model yields neutrally stable cycles for any initial conditidiis-P 3], which is a
severe restriction if we want to model realistic chemical and biochemical system. In con-
trast, the Minimal Higgins model shows stable steady states and stable oscillations usually
called limit cycles. The richness of this model stems from the second differential equation,
which includes an enzymatic Michaelis-Menten step. Moreover, the autocatalytic step in
the MH model can be linked to the activation of PFK by its product.

For completeness, we have included a fourth model in Table 1. This model is due to
SchnakembergZf] and is related to the Sel’kov model. In this model the bimolecu-
lar autocatalytic step in the Lotka 1910 model is replaced by a trimolecular step. This
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TABLE 1. Two variable models and their associated
differential equations.

Model Differential equations
dR] _

Lotka 1910 = KrGo —kw[R][W]
AL = K [RIW] — ko[W]
dR] _

Lotka 1920 £ = KrGo[R] — kw[R][W]

Lotka—Volterra d V,:/ = ku[R]W] —kp[W]

o
o
I

Minimal Higgins K.Go — Kac[X][Y]

dYt = kao[X][Y] — K;/,\jm_i_YY
Schnakenberg d >§ = k.G, — ks[X][Y] 2
Y

Ks[XI[Y] 2 — ko[Y]

e

change appears as a cubic term in the differential equations. With this change, the model
shows stable oscillations, but the connection between the cubic autocatalytic term and a
biochemical justification has not been achieved.

Linear Stability Analysis

In this section we present a linear stability analysi$&{3] of the Minimal Higgins
model. For this purpose, we scale the differential equation such that the dimensionless
differential equations depend only on two parameters rather than on five. Namely, we get
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from equation®22 and23

X

d—:A—XYE f1(X,Y) (33)
dr

dy qY

= XY — —— = f(X.Y 34
5 Y, 2(X,Y) (34)

where we have defined the following dimensionless quantities

T = KacKomt (35)
X = %]M (36)
Y = %]M 37)
A= Ki;; : (38)
1= (39)

The first step in the stability analysis is to find the steady state solution. In general this is
done by setting the left hand side of the differential equations equal to zero and solving
for the concentrations. From equatidgdisand 34, we obtain, for the scaled MH model,

the following steady state solutions

x¥*=0q—-A (40)

y*S = (41)

= 7q A
Clearly from equationg0and4 1, we see that only values éfless tham give meaningful
solutions; i.e.x*% and y** have to be positive. Physically this condition means that the
maximum enzymatic ratd/on, has to be greater than the input flkx,G..

Once these stationary states are obtained, stability analysis studies what happens to all
components of the system when it is perturbed slightly from its steady state. For this
purpose we first calculate the relaxation matRwhich is the Jacobian associated with
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a set of ordinary differential equations (ODES&)]
(5%) (%)
0 SS \/SS 0 SS \/SS
R = [ (a—f2>(x ,Y59) 8_f2)(x %) :| (42)
ax (XSS’ySS) 8Y (XSS,ySS)

For the scaled MH model, we obtain the following matrix.

_yss __xSS
R= 43
{ yss XSS (1+?/ss)2 (43

Next, we have to find the eigenvalues,, of R. In other words we have to find the
solutions of the following equation.

IR—AlIl=0 (44)

wherel is the two by two identity matrix. For the MH model, equatigi) reduces to
the following characteristic polynomial.

(1 _|_ ySS)(ySS _ XS% + XSS XSSySS
A2 A = 4
+ ( 1 _|_ ySS + 1 _|_ ySS ( 5)
Furthermore the solutions of the quadratic equatiti) are
Lo LA YD) 4 X
T2 1+ yss
2
1 1 SS SS __ ySS SS SSy/SS
jEJ((er)(y x)+x)_4(xy ) )
2 1 _|_ ySS 1 _|_ ySS

Using equationg0 and41, equation46 can be reduced to the following expression

_ PR(Av CI) + 2 Y% ID| (A’ q)
29(q — A

where we have defined the following functions.

(47)

+

Pr(A, Q) = A[A* - 2Aq+q* — (] (48)
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Pi(A q) = A[A> —4gA* +2q(3q + DA’ — 4g%(q + 2) A
+ 9%(@° + 109 + 1) A — 4q°] (49)

Equations 48) and ¢9) have been obtained both by analytical methods and with the help
of the software package MathematiGal

Discussion
In this section we extract the information contained in equati®ist9, which were
obtained in the previous section using linear stability analysis.

First, from equation!7, we can consider four possible sets of conditions: (a) In the case

of Pr < 0andP, > 0, the eigenvalues are pure, real, and negative; thus, the steady state
solution is a stable fixed poin2[]; (b) whenPr < 0 andP, < 0 the eigenvalues have a
negative real part and a nonzero imaginary part; therefore these eigenvalues give damped
oscillations; (c) forPr > 0 andP, > 0 the eigenvalues are pure, real, and positive;
therefore, the steady state is unstable; and (@it~ 0 andP, < 0, the eigenvalues have

a positive real part and a nonzero imaginary part; thus, the steady state is unstable, and
the state of the system tends to move away from the steady state and approaches stable
oscillations.

Second, using equatiodss and49, we can construct a plot oA vs. g, where we can
easily observe different regions, each corresponding to different dynamical behaviors.
Figure 1 depicts such a diagram, and the different lines represent curves A&vhecg

P,, and Pr are equal to zero; these curves delimit different regions in parameter space.
In region A, P, > 0 andPr < 0; thus, we should observe stable fixed points. In region
B, P, < 0 andPr < O; therefore, we should observe damped oscillations. Finally, in
region C,P, < 0 andPr > 0 and we should observe limit cycles.

Also, fora fixed value ofg, the value ofA at whichPr(A, q) is equal to zeroA., defines
the bifurcation point. From equatiofB the nontrivial solution tdPr(A¢, q) = 0O, for a
fixed value ofg, is given by

Ac =9 -4 (50)

where we have used the physical condithr: . Consequently, values étgreater than
Ac areinregions A or B, and for values less thiggare in region C. ThusfoA; < A < (
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10

FIGURE 1. PARAMETER SPACE DIAGRAM FOR THE MINIMAL HIGGINS MODEL. REGION A IS LIMITED BY THE
LINE g = AAND P, (A, q) = 0; REGION B IS LIMITED BY P, (A,q) = 0 AND Pr(A, q) = 0; REGION C IS DEFINED BY
PR(A, q) > O

the system reaches a stable steady stateARorA., the system reaches a limit cycle. As

an example, if we considey = 10, the bifurcation will occur af. = 6.837. With this
information we can select different values of the dimensionless external flux, A, in such
a way that different dynamical behaviors can be observed if we numerically integrate
equations33 and34.

Finally, using Mathematica, we numerically integrate equatighand 34, with initial
conditionsx(0) = 10 andy(0) = 10, and generate Figures 2—4. First, we consider
g = 10 andA = 8.50. These values represent a point in region A. Figure 2a depicts the
approach ok to its steady state valu{ = 1.5), and Figure 2b shows the approach
to the fixed point (1.5, 5.66) iRy phase space. Next, we consider= 6.87. Figure 3a
illustrates the time series of a damped oscillatiorx @pproaches its steady state value
of x5% = 3.13. In Figure 3b, we observe iy phase space the spiral in approach to the
steady statext®® = 3.13, y*° = 2.19). Finally, we consideA = 6.5. This value is less
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X
a)

Y
[
o
b)

2.5 5 7.5 10 12.5 15 17.5 20
X

FIGURE 2. EXAMPLE OF AFIXED POINT. IN THIS CASE WE CONSIDER q = 10AND A = 8.50, WHICH REPRESENTS A
POINT IN REGION A. FIGURE (a) SHOWS THE TIME SERIES OF x WITH INITIAL VALUES x = 10AND y = 10; FIGURE (b)
DEPICTS THE BEHAVIOR IN xy PHASE SPACE.

than A, which means that stable oscillations could be observed. Figure 4a depicts the
stable oscillations ok as a function of scaled time; Figure 4b shows the approach to a
stable limit cycle around the unstable steady stateé£ 3.5, y°° = 1.86).

The only problem associated with the MH model and inherent in all of the models in
Table 1 is a fixed point ay = 0 and an infinitely large value of. Numerically, for

fixed g, the problem appears for small valuesAfin some cases, Mathematica is not
able to handle the numerical integrations and other algorithms are required to study the
differential equations for small values @& [26, 27]. Modifications intended to remove
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a)

b)

FIGURE 3. EXAMPLE OF DAMPED OSCILLATIONS. IN THIS CASE WE CONSIDER q = 10 AND A = 6.87, WHICH
REPRESENTS A POINT IN REGION B. FIGURE (a) DEPICTS THE DAMPED OSCILLATIONS OF x AS a FUNCTION OF
DIMENSIONLESS TIME WITH THE SAME INITIAL CONDITIONS AS IN FIGURE 2; FIGURE (b) DEPICTS THE SPIRAL IN
APPROACH TO THE STABLE STEADY STATE IN xy PHASE SPACE.

these kind of fixed points have been done to the Schnakenberg model. For example, the
addition of a first order conversion &finto y is discussed in referencezd-30].

Summary

The minimal Higgins model is a simple two-species model that shows stable steady states
and limit cycles in enzyme kinetics. The steps in the mechanism have a biochemical

justification and the step responsible for the stable oscillation is a Michaelis—Menten

step. Furthermore, linear stability analysis of this model is simple and accessible both
analytically or with the help of Mathematica; for example the bifurcation points are
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X
a)

A =6.50

Y
[
o
b)

2.5 5 7.5 10 12.5 15 17.5 20
X

FIGURE 4. EXAMPLE OF A STABLE LIMIT CYCLE. IN THIS CASE WE CONSIDER Q = 10 AND A = 6.50, WHICH
REPRESENTS A POINT IN REGION C. FIGURE (a) DEPICTS THE STABLE OSCILLATIONS IN X AS A FUNCTION OF
DIMENSIONLESS TIME WITH THE SAME INITIAL CONDITION AS IN FIGURE 2; FIGURE (b) SHOWS THE APPROACH
TO THE LIMIT CYCLE IN XY PHASE SPACE.

obtained by fixing eitheA or g and solving a simple quadratic equation; that is, equation
50. Also, numerical integration of equatio8 and34 both confirms and exemplifies the
results obtained from linear stability analysis.
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